HelloDBA [English]
搜索Internet 搜索 HelloDBABA
  Oracle技术站。email: fuyuncat@gmail.com  MSN: fuyuncat@hotmail.com   acoug  acoug 

让语句横着走————对海量数据更新的并行优化

[English]

作者: fuyuncat

来源: www.HelloDBA.com

日期: 2009-05-07 14:57:45

分享到  新浪微博 腾讯微博 人人网 i贴吧 开心网 豆瓣 淘宝 推特 Facebook GMail Blogger Orkut Google Bookmarks

 

环境:

OSlinux

CPU8

Oracle Database10.2.0.3.0

 

 

  接到开发组的一个调优请求,任务是对一张海量表CS2_CT_MVMT(近2亿多记录,表大小48G)进行数据update,而更新数据来自于另外一张海量的日志表CS2_TXN_LOG(同样近2亿,表大小42G),数据处理的语句如下:

 

UPDATE CS2_CT_MVMT CT
         SET CT.LAST_MOD_DT = (SELECT TL.MSG_GMT_DT
                                   FROM CS2_TXN_LOG TL
                                 WHERE TL.MSG_ID > 9000000000000000000
                                    AND CT.MSG_ID = TL.MSG_ID
                                    AND TL.MSG_GMT_DT IS NOT NULL)
 WHERE EXISTS (SELECT 1
                FROM CS2_TXN_LOG TL
               WHERE TL.MSG_ID > 9000000000000000000
                 AND CT.MSG_ID = TL.MSG_ID
                 AND TL.MSG_GMT_DT IS NOT NULL);

 

根据开发人员对数据的估算,在此逻辑下,CS2_CT_MVMT将会有近一半数据(近1亿条)要被更新,相对应的,数据来自于CS2_TXN_LOG中的近1一亿条数据。开发人员曾经尝试过运行语句,但是3天都没执行完。

 

第一步,对语句进行调优

首先,先看下语句的查询计划:

SQL> set line 300
SQL> set pages 50
SQL> explain plan for
  2  UPDATE CS2_CT_MVMT CT
  3     SET CT.LAST_MOD_DT = (SELECT TL.MSG_GMT_DT
  4                             FROM CS2_TXN_LOG TL
  5                            WHERE TL.MSG_ID > 9000000000000000000
  6                              AND CT.MSG_ID = TL.MSG_ID
  7                              AND TL.MSG_GMT_DT IS NOT NULL)
  8   WHERE EXISTS (SELECT 1
  9            FROM CS2_TXN_LOG TL
 10           WHERE TL.MSG_ID > 9000000000000000000
 11             AND CT.MSG_ID = TL.MSG_ID
 12             AND TL.MSG_GMT_DT IS NOT NULL);
 
Explained.
 
SQL> select * from table(dbms_xplan.display());
 
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------
Plan hash value: 3604468536
 
---------------------------------------------------------------------------
| Id  | Operation                     | Name           | Rows  | Bytes |TempSpc| Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | UPDATE STATEMENT              |                |    11M|   432M|       |  3580K  (1)| 11:56:06 |
|   1 |  UPDATE                       | CS2_CT_MVMT    |       |       |       |            |          |
|*  2 |   HASH JOIN SEMI              |                |    11M|   432M|   352M|  3580K  (1)| 11:56:06 |
|*  3 |    TABLE ACCESS FULL          | CS2_CT_MVMT    |    11M|   216M|       |  1690K  (1)| 05:38:12 |
|*  4 |    TABLE ACCESS FULL          | CS2_TXN_LOG    |   214M|  3888M|       |  1552K  (1)| 05:10:25 |
|*  5 |   FILTER                      |                |       |       |       |            |          |
|*  6 |    TABLE ACCESS BY INDEX ROWID| CS2_TXN_LOG    |     1 |    19 |       |     4   (0)| 00:00:01 |
|*  7 |     INDEX UNIQUE SCAN         | CS2_TXN_LOG_PK |     1 |       |       |     3   (0)| 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("CT"."MSG_ID"="TL"."MSG_ID")
   3 - filter("CT"."MSG_ID">9000000000000000000)
   4 - filter("TL"."MSG_ID">9000000000000000000 AND "TL"."MSG_GMT_DT" IS NOT NULL)
   5 - filter(9000000000000000000<:B1)
 
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------
   6 - filter("TL"."MSG_GMT_DT" IS NOT NULL)
   7 - access("TL"."MSG_ID"=:B1)
       filter("TL"."MSG_ID">9000000000000000000)
 
25 rows selected.

 

从查询计划看,两表之间存在一个hash join。再看看两表之间的关系:

 

SQL> select c.table_name as child_table, c.constraint_name as FK, p.table_name as parent_table, p.constraint_name as PK
  2  from all_constraints p, all_constraints c
  3  where c.table_name in ('CS2_CT_MVMT','CS2_TXN_LOG')
  4  and c.r_constraint_name = p.constraint_name
  5  and c.constraint_type = 'R'
  6  and p.constraint_type='P';
 
CHILD_TABLE                    FK                             PARENT_TABLE                   PK
------------------------------ ------------------------------ -------------
CS2_CT_MVMT                    CS2_CT_MVMT_FK1                CS2_TXN_LOG                    CS2_TXN_LOG_PK
 
SQL> select table_name, column_name from dba_ind_columns
  2  where index_name = 'CS2_TXN_LOG_PK';
 
TABLE_NAME                     COLUMN_NAME
------------------------------ ------------------------------
CS2_TXN_LOG                    MSG_ID

 

可见,CS2_CT_MVMT是依赖于CS2_TXN_LOG的子表,其依赖字段MSG_ID正是CS2_TXN_LOG的主键唯一字段。我们可以对这条语句的逻辑描述如下:

CS2_CT_MVMT依据主外键关系从父表CS2_TXN_LOG中更新相应数据,且只从CS2_TXN_LOG获取满足(MSG_ID > 9000000000000000000 AND MSG_GMT_DT IS NOT NULL)。我们可以这个逻辑关系对语句进行调整以减少查询计划中的访问路径:

根据业务分析,CS2_CT_MVMT中将近一半的数据满足更新条件,也就是由hash join只能过滤一半的数据,而在SET子句中的子查询已经保证了两表数据的完整性关系已经对父表的数据过滤条件。这样的话,这个join的代价就太大了,它应该从语句中拿掉:

UPDATE CS2_CT_MVMT CT
         SET CT.LAST_MOD_DT = (SELECT TL.MSG_GMT_DT
                                   FROM CS2_TXN_LOG TL
                                 WHERE TL.MSG_ID > 9000000000000000000
                                    AND CT.MSG_ID = TL.MSG_ID
                                    AND TL.MSG_GMT_DT IS NOT NULL);

 

但这样会产生一个问题:子查询的记录数可能为101:1),也就是将近1半为NULL(即对应的CS2_CT_MVMT记录无需更新)。很简单,我们用NVL函数来处理:

UPDATE CS2_CT_MVMT CT
         SET CT.LAST_MOD_DT = NVL((SELECT TL.MSG_GMT_DT
                                     FROM CS2_TXN_LOG TL
                                   WHERE TL.MSG_ID > 9000000000000000000
                                      AND CT.MSG_ID = TL.MSG_ID
                                      AND TL.MSG_GMT_DT IS NOT NULL), CT.LAST_MOD_DT);

从查询计划中看到,COST将近一半:

 

---------------------------------------------------------------------------
| Id  | Operation                     | Name           | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | UPDATE STATEMENT              |                |   119M|  2160M|  1699K  (2)| 05:39:57 |
|   1 |  UPDATE                       | CS2_CT_MVMT    |       |       |            |          |
|   2 |   TABLE ACCESS FULL           | CS2_CT_MVMT    |   119M|  2160M|  1699K  (2)| 05:39:57 |
|*  3 |   FILTER                      |                |       |       |            |          |
|*  4 |    TABLE ACCESS BY INDEX ROWID| CS2_TXN_LOG    |     1 |    19 |     4   (0)| 00:00:01 |
|*  5 |     INDEX UNIQUE SCAN         | CS2_TXN_LOG_PK |     1 |       |     3   (0)| 00:00:01 |
---------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - filter(9000000000000000000<:B1)
   4 - filter("TL"."MSG_GMT_DT" IS NOT NULL)
   5 - access("TL"."MSG_ID"=:B1)
       filter("TL"."MSG_ID">9000000000000000000)

 

再进一步,由于存在等价关系CT.MSG_ID = TL.MSG_ID,我们可以将TL.MSG_ID > 9000000000000000000转换为CT.MSG_ID > 9000000000000000000,作为对CS2_CT_MVMT扫描后的filter,从而大大减少UPDATE操作,也大大减少子查询的运行次数。

 

UPDATE CS2_CT_MVMT CT
         SET CT.LAST_MOD_DT = NVL((SELECT TL.MSG_GMT_DT
                                     FROM CS2_TXN_LOG TL
                                   WHERE CT.MSG_ID = TL.MSG_ID
                                      AND TL.MSG_GMT_DT IS NOT NULL), CT.LAST_MOD_DT)
WHERE CT.MSG_ID > 9000000000000000000;
 
---------------------------------------------------------------------------
| Id  | Operation                    | Name           | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------
|   0 | UPDATE STATEMENT             |                |    11M|   216M|  1690K  (1)| 05:38:12 |
|   1 |  UPDATE                      | CS2_CT_MVMT    |       |       |            |          |
|*  2 |   TABLE ACCESS FULL          | CS2_CT_MVMT    |    11M|   216M|  1690K  (1)| 05:38:12 |
|*  3 |   TABLE ACCESS BY INDEX ROWID| CS2_TXN_LOG    |     1 |    19 |     4   (0)| 00:00:01 |
|*  4 |    INDEX UNIQUE SCAN         | CS2_TXN_LOG_PK |     1 |       |     3   (0)| 00:00:01 |
---------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter("CT"."MSG_ID">9000000000000000000)
   3 - filter("TL"."MSG_GMT_DT" IS NOT NULL)
   4 - access("TL"."MSG_ID"=:B1)

 

最后再看子查询部分:对于每条满足条件的CS2_CT_MVMT中的记录,都将执行一次子查询,由CS2_TXN_LOG的主键获取其表数据块中的MSG_GMT_DT数据。子查询包含了3步操作:

1. 对主键的INDEX UNIQUE SCAN,获取表记录的ROWID

2. ROWID读取表的数据块;

3. 根据条件MSG_GMT_DT IS NOT NULL进行过滤

 

可以预计,子查询的执行次数也是巨大的,我们可以考虑通过建立复合字段索引来消除第二步操作。而通过与开发人员确认,实际上CS2_TXN_LOGMSG_GMT_DTNULL的数据极少,也就是MSG_GMT_DT IS NOT NULL过滤的数据极少,NVL函数已经可以处理这些数据,我们就可以将这个条件拿掉。

 

SQL> CREATE UNIQUE INDEX CS2_PARTY_OWNER.CS2_TXN_LOG_TEST ON CS2_TXN_LOG (MSG_ID, MSG_GMT_DT);
 
Index created.
 
语句及查询计划如下:
 
UPDATE CS2_CT_MVMT CT
         SET CT.LAST_MOD_DT = NVL((SELECT TL.MSG_GMT_DT
                                       FROM CS2_TXN_LOG TL
                                      WHERE CT.MSG_ID = TL.MSG_ID), CT.LAST_MOD_DT)
WHERE CT.MSG_ID > 9000000000000000000;
 
---------------------------------------------------------------------------
| Id  | Operation          | Name             | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | UPDATE STATEMENT   |                  |    11M|   216M|  1690K  (1)| 05:38:12 |
|   1 |  UPDATE            | CS2_CT_MVMT      |       |       |            |          |
|*  2 |   TABLE ACCESS FULL| CS2_CT_MVMT      |    11M|   216M|  1690K  (1)| 05:38:12 |
|*  3 |   INDEX RANGE SCAN | CS2_TXN_LOG_TEST |     1 |    19 |     4   (0)| 00:00:01 |
---------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter("CT"."MSG_ID">9000000000000000000)
   3 - access("TL"."MSG_ID"=:B1)

 

通过逻辑分析和查询计划分析对语句的查询部分优化基本上完成。但是这个结果还远不能满足1小时的系统off line时间完成数据更新的目标。

 

由于这是一次表更新操作,因此我们就还需要考虑一些依赖对象对更新操作的影响。

 

第二步,消除依赖对象的性能影响

我们看下被更新表上有一些什么依赖对象会影响到更新性能。

 

SQL> SELECT trigger_name FROM DBA_TRIGGERS WHERE table_name='CS2_CT_MVMT' AND triggering_event like '%UPDATE%';
 
no rows selected
 
SQL> SELECT s.constraint_name, search_condition
  2  FROM DBA_CONSTRAINTS S, DBA_CONS_COLUMNS C
  3  WHERE s.table_name='CS2_CT_MVMT'
  4  AND s.constraint_name=c.constraint_name
  5  and s.table_name=c.table_name
  6  and c.column_name='LAST_MOD_DT';
 
CONSTRAINT_NAME                SEARCH_CONDITION
------------------------------ --------------------------------------------
SYS_C0013690                   "LAST_MOD_DT" IS NOT NULL
 
SQL> SELECT index_name FROM DBA_IND_COLUMNS
  2  WHERE TABLE_NAME='CS2_CT_MVMT'
  3  AND column_name='LAST_MOD_DT';
 
INDEX_NAME
------------------------------
CS2_CT_MVMT_IDX7

 

在批量更新之前,将这些依赖对象和约束先禁用将有助于提高更新性能。

 

SQL> ALTER TABLE CS2_CT_MVMT MODIFY LAST_MOD_DT NULL;
 
Table altered.

 

提示:我们已经通过逻辑保证了LAST_MOD_DT不被更新为NULL,这个约束对整体性能的影响很小,可以不用关闭。

 

SQL> drop index CS2_CT_MVMT_IDX7;
 
Index dropped.

 

Tips:有人可能会想到将表修改为NOLOGGING,以禁止写REDO LOG。但事实上,NOLOGGING只对Direct WriteINSERT起作用,对UPDATE,总是会写REDO LOG。有兴趣的朋友可以做个简单实验去验证一下。

 

第三步,将语句并行化

这一步起的作用并不是提高整体性能,而是使过程在更短的时间内占用更大的负载来完成任务。

给语句加上并行化提示

 

UPDATE /*+parallel(CT 8)*/ CS2_CT_MVMT CT
         SET CT.LAST_MOD_DT = NVL((SELECT TL.MSG_GMT_DT
                                       FROM CS2_TXN_LOG TL
                                      WHERE CT.MSG_ID = TL.MSG_ID), CT.LAST_MOD_DT)
WHERE CT.MSG_ID > 9000000000000000000;

 

看查询计划:

 

---------------------------------------------------------------------------
| Id  | Operation          | Name             | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | UPDATE STATEMENT   |                  |    11M|   216M|  1690K  (1)| 05:38:12 |
|   1 |  UPDATE            | CS2_CT_MVMT      |       |       |            |          |
|*  2 |   TABLE ACCESS FULL| CS2_CT_MVMT      |    11M|   216M|  1690K  (1)| 05:38:12 |
|*  3 |   INDEX RANGE SCAN | CS2_TXN_LOG_TEST |     1 |    19 |     4   (0)| 00:00:01 |
---------------------------------------------------------------------------

 

嗯,没其作用。看看系统的parallel设置:

 

SQL> show parameter parallel
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- --------------------------
fast_start_parallel_rollback         string      LOW
parallel_adaptive_multi_user         boolean     TRUE
parallel_automatic_tuning            boolean     FALSE
parallel_execution_message_size      integer     2152
parallel_instance_group              string
parallel_max_servers                 integer     0
parallel_min_percent                 integer     0
parallel_min_servers                 integer     0
parallel_server                      boolean     TRUE
parallel_server_instances            integer     3
parallel_threads_per_cpu             integer     2
recovery_parallelism                 integer     0

 

注意到,parallel_max_servers被设置为0了,因此不会起并行进程。修改设置,

 

SQL> alter system set parallel_max_servers=160 scope=memory;
 
System altered.
 
再次获取查询计划
 
---------------------------------------------------------------------------
| Id  | Operation             | Name             | Rows  | Bytes | Cost (%CPU)| Time     |    TQ  |IN-OUT| PQ Distrib |
---------------------------------------------------------------------------
|   0 | UPDATE STATEMENT      |                  |    11M|   216M|   234K  (1)| 00:46:50 |        |      |            |
|   1 |  UPDATE               | CS2_CT_MVMT      |       |       |            |          |        |      |            |
|   2 |   PX COORDINATOR      |                  |       |       |            |          |        |      |            |
|   3 |    PX SEND QC (RANDOM)| :TQ10000         |    11M|   216M|   234K  (1)| 00:46:50 |  Q1,00 | P->S | QC (RAND)  |
|   4 |     PX BLOCK ITERATOR |                  |    11M|   216M|   234K  (1)| 00:46:50 |  Q1,00 | PCWC |            |
|*  5 |      TABLE ACCESS FULL| CS2_CT_MVMT      |    11M|   216M|   234K  (1)| 00:46:50 |  Q1,00 | PCWP |            |
|*  6 |   INDEX RANGE SCAN    | CS2_TXN_LOG_TEST |     1 |    19 |     4   (0)| 00:00:01 |        |      |            |
---------------------------------------------------------------------------

 

语句已经并行化了。

 

尝试运行语句,看看效果。

 

 
SQL> select s.sid, s.SERIAL#, s.PROGRAM, s.MODULE, sq.SQL_ID, sq.sql_text
  2  from v$session s, v$sqlarea sq
  3  where s.sql_address = sq.address
  4  order by sql_id, program;
 
       SID    SERIAL# PROGRAM                                          MODULE                                           SQL_ID
---------- ---------- ------------------------------------------------ ----
SQL_TEXT
---------------------------------------------------------------------------
      1892       6069 oracle@pmrac01 (P000)                            SQL*Plus                                         51b0kx3g5gbfx
UPDATE /*+ PARALLEL(CT,8) */ CS2_CT_MVMT CT    SET CT.LAST_MOD_DT = NVL((SELECT TL.MSG_GMT_DT